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Usual Effect Size for Two Group Study

◮ Most common effect size (ES) measures compare means

◮ Because different studies use different scales, we must adjust
for variance

◮ Thus we have the basic form ES = XT−XC

s

◮ Notation: T = Treatment group, C = control group, s is
standard deviation (of control or pooled)

◮ Several adjustments have been proposed to reduce bias



Extension to Single Case Design (SCD)

◮ Why should we? After all, the dependent variable is often
already on a scale that is directly interpretable.

◮ Because: Sometimes you want to compare SCDs with
between-group studies that use different outcomes

◮ One approach: divide (treatment - baseline) by respondent’s
baseline standard deviation

◮ Why not? This is a within-person standard deviation

◮ Between-person variation (from two-group studies) is usually
much larger, thus not comparable



An Effect Size (ES) Comparable to Usual d

◮ Suppose an SCD has several participants

◮ Use variation among them as denominator

◮ Several options are possible, each with advantages and
disadvantages

◮ Method 1: Divide by estimate of between-person variance
(flawed, though it seems natural)

◮ Method 2: Divide by between + within variance
(right, though not intuitive)



Complication: Dependent variables are often counts, not
continuous

◮ Ex 1: How many times does S hit another child?
◮ No (theoretical) max
◮ Poisson (or more complicated) distribution
◮ Stat notation: Y ~Poisson(λ)
◮ BUGS (Bayesian software) notation:

y[i] ~ dpois(lambda[i])

◮ Ex 2: How many HW probs (out of 10) does S attempt?
◮ attempt/10 = proportion
◮ binomial (or more complicated) distribution
◮ Stat notation: Y ~Binomial(p, n)
◮ BUGS notation: y[i] ~ dbin(p,n)

~
~
~
~


Graphical representation of important concepts

(1) Sketch of simple phase-change model for a single subject

Each subject has an average baseline value, and an average change
during the treatment phase.



Grahical representation

(2)Subjects vary in their baseline levels



Graphical representation

(3) Within each subject, there is variation around the phase mean



Statistical model for a continuous outcome
and one person-level predictor

Model for individual observations for subject j at time i:

Yij = β0j + β1jPhaseij + rij

Phaseij =

{

0 for baseline

1 for treatment

We can model the baseline value of subject j as a function of Sex:

β0j = γ00 + γ01Femalej + u0j

(where Femalej is 0 for males, 1 for females)

And also the treatment effect of subject j as a function of Sex:

β1j = γ10 + γ11Femalej + u1j



Simplified and combined statistical model
for a continuous outcome (no person-level predictor)

Model for individual observations for subject j at time i:

Yij = β0j + β1jPhaseij + rij

Model for baseline value of subject j:

β0j = γ00 + u0j

Model for treatment effect of subject j:

β1j = γ10 + u1j

Combined model, substituting into first equation:
Yij = (γ00 + u0j) + (γ10 + u1j)Phaseij + rij

We often use the combined model for certain software packages,
including the BUGS software I will be using.



More details on model

◮ Var(u0j) = τ00 is part of the between-person variation

◮ Var(rij) = σ2 is within person variation
◮ contributes to usual denominator in ES
◮ can’t be separated from between-person variation without

repeated measurements of the same person

◮ Thus, we might naively use ES1 = γ10/
√

τ00

◮ But more properly we would define ES2 = γ10/
√

τ00 + σ2

◮ On logit scale, σ2 ≈ 1/(nπ(1 − π))



Logistic version of model

◮ Our data has number of successes in 10 trials, measured each
day (or session) for the period of the study

◮ We need the equivalent of a logistic regression

◮ Outcome is the logarithm of the odds, called the logit

◮ In GLM (generalized linear models) this is expressed by
separating the linear part of the model from the (logit)
transform of the dependent variable



Logistic model, cont.

We represent the combined model as follows:

ηij = (γ00 + u0j) + (γ10 + u1j)Phaseij

ηij = ln(
πij

1−πij
) = logit(π)

Yij~binomial(πij , nij)

Where Yij is the count of events out of nij trials,
each with probability πij of the event occuring
(Often nij = n; that is, it is constant across time and subjects)

~


Why Bayesian?

◮ Bayesian philosophy: Statistics is about using data to revise
beliefs about unknown values (parameters)

◮ Initial (prior) beliefs could be vague (noninformative) or based
on evidence available before collecting current data

◮ Information in the data is combined with any prior information
to produce a Posterior Distribution, which summarizes our
beliefs after seeing the data

◮ Bayesian models resemble usual models, except for
specification of priors and interpretation of outcome

◮ Bayesian interpretation of interval: Probability is .95 that the
parameter is in the interval (natural, but wrong in classical
stat)



Why (Win)BUGS?

◮ Some Bayesian computational methods, including those used
in BUGS, allow simple ways to make inferences about derived
quantities

◮ In particular, we want to make inferences about effect sizes,
which are complicated quantities

◮ BUGS will make it (relatively) simple for us to make
inferences about effect sizes

◮ The following slides will show how to write a simple logistic
regression model, compute ES, and interpret results



Data Structure

subj[ ] r[ ] phase[ ]

1 4 0

1 5 0

1 5 0

1 4 0

1 5 0

1 10 1

1 8 1

....

1 9 1

1 9 1

2 2 0

2 3 0

...

2 10 1

2 9 1

3 6 0

3 6 0

...

3 9 1

3 9 1

4 4 0

4 3 0

...

4 9 1

4 9 1

END DATA



WinBUGS Code 1: Basic Model
First some comments so I remember what I’m doing:

# binomial, 10 trials per session

# 4 respondents, 2 phases (AB), multiple baseline

# p(yes) goes from about .5 in baseline to .8 or .9

Next the model, first expressing the logit (log-odds) as a function
of phase, then the distribution as a binomial:

model

{ for (i in 1:103)

logit(p[i]) <- base[subj[i]] +

trt[subj[i]] * phase[i]

r[i] ~ dbin(p[i],10) }

Each subject has his/her own baseline and treatment effect,
with mean mu and precision (1/variance) prec:

for (j in 1:4)

{ base[j] ~ dnorm(mu0, prec0)

trt[j] ~ dnorm(mu1, prec1) }



WinBUGS Code 2:
Priors and Create Variances, SDs

First, relatively uninformative priors for means and standard
deviations of baseline and treatment effect:

mu0 ~ dnorm(0,.001)

mu1 ~ dnorm(0,.001)

prec0 ~ dgamma(.01,.01)

prec1 ~ dgamma(.01,.01)

Next, define variances and standard deviations, because it’s hard
for most of us to think in terms of precisions:

var0 <- 1/prec0

var1 <- 1/prec1

sd0 <- sqrt(var0)

sd1 <- sqrt(var1)



WinBUGS Code 3: Create New Variables
Find estimate of within-person variation at baseline;
must first transform from logit scale to find mean probability:

odds0 <- exp(mu0)

prob0 <- odds0/(1+odds0)

sigma.2 <- 1/(10 * prob0 * (1-prob0))

Next create total variance (between + within), and denominator
for effect size estimate:

var.tot <- sigma.2 + var0

sd.tot <- sqrt(var.tot)

Compute ES estimates, first wrong and then correctly:

# Uses only variation in average baselines:

es.bet.1 <- mu1/sd0

# (Properly) uses total variation:

es.bet.2 <- mu1/sd.tot

}



Output: Effect Sizes 1

node mean sd 2.5% median 97.5%

-------------------------------------------------

es.bet.1 5.5219 3.52 1.3147 4.8045 14.353

es.bet.2 2.7805 0.74798 1.195 2.8365 4.119

◮ First has a denominator that is too small,
and therefore the ES estimate is too large

◮ Second should be (at least approximately) right

Advantages of MCMC(BUGS): Not just estimate, but also

◮ Standard error (called sd in output)

◮ CI (2.5% − 97.5%)

◮ Info on skewness of distribution



Output: Effect Sizes 2

Rounded estimates for ES2 (correct estimate):

node mean sd 2.5% median 97.5%

-------------------------------------------------

es.bet.2 2.78 0.75 1.20 2.84 4.12

For ES2, we have

◮ Evidence of minor skewness:
Compare 2.84 − 1.20 = 1.64 to 4.12 − 2.84 = 1.28

◮ More evidence skew is minor:
Mean (2.78) is close to median (2.84)

◮ Empirical 95 percent credible (confidence) interval:
(1.20, 4.12)

◮ Thus ES could be as small as about 1, or as large as about 4

◮ Quite wide interval due to small number of respondents



Output : Basic Parameters

node mean sd 2.5% median 97.5%

mu0 -0.099319 0.38842 -0.84193 -0.10322 0.66174

mu1 2.3425 0.36558 1.6788 2.3369 3.0548

sd0 0.59467 0.44389 0.17013 0.48249 1.7053

sd1 0.47212 0.43196 0.089285 0.36225 1.5825

◮ Baseline average odds : exp(−.099) = .905

◮ Baseline average proportion: .905/1.905 = .475

◮ Treatment phase average odds : exp(−.909 + 2.343) = 9.42

◮ Treatment phase average proportion : 9.42/10.42 = .904



Output : Variances

Variances among subjects in baseline log-odds
and treatment effects:

node mean sd 2.5% median 97.5%

var0 0.55067 1.7968 0.028945 0.2328 2.9079

var1 0.40949 1.4639 0.007972 0.13123 2.5044

Variance within phases for subjects (sigma.2) and total (var.tot):

sigma.2 0.42011 0.15086 0.40001 0.40405 0.50187

var.tot 0.97079 1.9037 0.43176 0.64223 3.3746

sd.tot 0.91024 0.37715 0.65708 0.80139 1.837



Estimate for Individuals

Baseline log-odds for each person:

node mean sd 2.5% median 97.5%

-------------------------------------------------

base[1] 0.032035 0.18773 -0.33265 0.032001 0.40112

base[2] -0.39729 0.20606 -0.81881 -0.39097 -0.01188

base[3] 0.40382 0.21969 -0.02369 0.40348 0.83808

base[4] -0.44905 0.20319 -0.84266 -0.44938 -0.04398

Treatment effect (on log-odds scale) for each person:

trt[1] 2.5287 0.30277 1.9984 2.5041 3.1901

trt[2] 2.5158 0.2903 1.9742 2.5042 3.1398

trt[3] 2.3207 0.30109 1.7497 2.3133 2.9469

trt[4] 1.9931 0.27734 1.4186 2.006 2.4951



Problems with this approach

◮ Standardized measures aren’t in original scale

◮ With small number of observations in any phase, the
difference between phases is not well-estimated

◮ With small number of respondents, standard deviation among
respondents is not well-estimated

◮ If respondents are selected for low (or high) initial status,
between-respondent variation may be artificially low compared
to between-group studies (needs checking, at least)



Conclusions

◮ Bayesian computation allows relatively simple
◮ Estimation of effect size
◮ Production of confidence interval (CI)
◮ Estimates for each individual, including CI

◮ Some additional training (beyond HLM) is needed to set up
the model, do computations, and interpret results

◮ This procedure should be useful for SCD researchers who
want to produce results comparable to between-group studies
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